GATE-2017 Electrical EE Syllabus Exam Pattern www.gate.iisc.ernet.in

GATE-2017 Electrical Engineering (EE) Syllabus Check GATE-2017 Electrical EE Exam Syllabus GATE-2017 Exam Pattern of Questions Paper and ...

GATE-2017 Electrical Engineering (EE) Syllabus Check GATE-2017 Electrical EE Exam Syllabus GATE-2017 Exam Pattern of Questions Paper and Marking Schemes Download Previous Year Papers
GATE-2017 Electrical (EE) Exam Syllabus
The overall co-ordination and responsibility of conducting GATE 2017 lies with Indian Institute of Technology, Roorkee which is designated as the Organizing Institute (OI) for GATE 2017. As we all know, it is very hard to chase exam of GATE. As the time passing away the standard of competitive examination is raising with the time period rapidly. So, candidates also must have to pay more attention towards their preparation. Now, we are rendering the determined latest scheme of examination and syllabus of Electrical Engineering (EE) GATE-2017 conducting by IISc.
Exam Pattern : Exam Pattern for the GATE-2017 Electrical Engineering (EE) Exam is as Follows:-
► GATE 2017 would contain questions of two different types : (i) Multiple Choice Questions (MCQ) and (ii) Numerical Answer Questions.
► In all the papers, there will be a total of 65 questions carrying 100 marks, out of which 10 questions carrying a total of 15 marks are in General Aptitude (GA).
► In the paper, the Engineering Mathematics will carry around 15% of the total marks, the General Aptitude section will carry 15% of the total marks and the remaining 70% percentage of the total marks is devoted to the subject of the paper.
► The questions in a paper may be designed to test the following abilities : Recall, Comprehension, Application and Analysis & Synthesis.
Exam Syllabus : Exam Syllabus for Electrical Engineering (EE) GATE-2017 Exam is given below :-
Engineering Mathematics :-
Linear Algebra : Matrix algebra, Systems of linear equations, Eigen values and Eigen vectors.
Calculus : Functions of single variable, Limit, continuity and differentiability, Mean value theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.
Differential equations : First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Cauchy’s and Euler’s equations, Initial and boundary value problems, Laplace transforms, Solutions of one dimensional heat and wave equations and Laplace equation.
Complex variables : Analytic functions, Cauchy’s integral theorem, Taylor and Laurent series.
Probability and Statistics : Definitions of probability and sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Poisson,Normal and Binomial distributions.
Numerical Methods : Numerical solutions of linear and non-linear algebraic equations Integration by trapezoidal and Simpson’s rule, single and multi-step methods for differential equations.
Transform Theory : Fourier transform,Laplace transform, Z-transform.
Electrical Engineering :-
Electric Circuits : Network graph, KCL, KVL, Node and Mesh analysis, Transient response of dc and  ac networks, Sinusoidal steady‐state analysis, Resonance, Passive filters, Ideal current  and voltage sources,The venin’stheorem, Norton’s theorem, Superposition theorem, Maximum power transfer theorem, Two‐port networks, Three phase circuits, Power and power factor in ac circuits.
Electromagnetic Fields : Coulomb’s  Law,  Electric  Field  Intensity,  Electric  Flux  Density,  Gauss’s  Law,  Divergence,Electric  field  and  potential  due  to  point,  line,  plane  and  spherical  charge  distributions,Effect  of  dielectric  medium,  Capacitance  of  simple  configurations,  Biot‐Savart’s  law,Ampere’s  law,  Curl,  Faraday’s  law,  Lorentz  force,  Inductance,  Magnetomotive  force,Reluctance, Magnetic circuits,Self and Mutual inductance of simple configurations.
Signals and Systems : Representation of continuous and discrete-time signals; shifting and scaling operations; linear, time-invariant and causal systems; Fourier series representation of continuous periodic signals; sampling theorem; Fourier, Laplace and Z transforms.
Electrical Machines : Single phase transformer – equivalent circuit, phasor diagram, tests, regulation and efficiency; three phase transformers – connections, parallel operation; auto-transformer; energy conversion principles; DC machines – types, windings, generator characteristics, armature reaction and commutation, starting and speed control of motors; three phase induction motors – principles, types, performance characteristics, starting and speed control; single phase induction motors; synchronous machines – performance, regulation and parallel operation of generators, motor starting, characteristics and applications; servo and stepper motors.
Power Systems : Basic power generation concepts; transmission line models and performance; cable performance, insulation; corona and radio interference; distribution systems; per-unit quantities; bus impedance and admittance matrices; load flow; voltage control; power factor correction; economic operation; symmetrical components; fault analysis; principles of over-current, differential and distance protection; solid state relays and digital protection; circuit breakers; system stability concepts, swing curves and equal area criterion; HVDC transmission and FACTS concepts.
Control Systems : Principles of feedback; transfer function; block diagrams; steady-state errors; Routh and Niquist techniques; Bode plots; root loci; lag, lead and lead-lag compensation; state space model; state transition matrix, controllability and observability.
Electrical and Electronic Measurements : Bridges and potentiometers; PMMC, moving iron, dynamometer and induction type instruments; measurement of voltage, current, power, energy and power factor; instrument transformers; digital voltmeters and multimeters; phase, time and frequency measurement; Q-meters; oscilloscopes; potentiometric recorders; error analysis.
Analog and Digital Electronics : Characteristics of diodes, BJT, FET; amplifiers – biasing, equivalent circuit and frequency response; oscillators and feedback amplifiers; operational amplifiers – characteristics and applications; simple active filters; VCOs and timers; combinational and sequential logic circuits; multiplexer; Schmitt trigger; multi-vibrators; sample and hold circuits; A/D and D/A converters; 8-bit microprocessor basics, architecture, programming and interfacing.
Power Electronics and Drives : Semiconductor power diodes, transistors, thyristors, triacs, GTOs, MOSFETs and IGBTs – static characteristics and principles of operation; triggering circuits; phase control rectifiers; bridge converters – fully controlled and half controlled; principles of choppers and inverters; basis concepts of adjustable speed dc and ac drives.
For more Information please visit – http://www.gate.iitr.ernet.in/


Syllabus 4661309413118135049

Post a Comment

Subscribe us on YouTube


All Categories